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Abstract—The subject of this paper is a boundary element method (BEM) formulation and numeri-
cal implementation for inelastic axisymmetric problems in the presence of small elastic strains but
large inelastic strains and rotations. A rate formulation with an elastic-viscoplastic material model,
together with an updated Lagrangian description of the problem, is used in this paper. Careful
attention is paid here to the analytical and numerical treatment of the complicated and sensitive
kernels that arise in these integral equations for axisymmetric problems. A BEM computer program
has been developed for the solution of general large strain-large rotation inelastic axisymmetric
boundary/initial value problems. Numerical results for some sample problems are obtained from
the BEM computer program and these results are compared against direct solutions.

INTRODUCTION

The subject of this paper is the analysis of axisymmetric problems in solid mechanics in the
presence of small elastic strains but large inelastic strains and rotations. Such a situation
commonly exists during the forming of metals. A rate formulation, together with an updated
Lagrangian description of the problem, is used in this paper. The method of analysis is the
boundary element method (BEM).

Mukherjee and his co-authors have considerable experience in the solution of elastic-
viscoplastic problems by the boundary element method, Their research, up to 1982, is
summarized in a book by Mukherjee[1]. Small strain planar and axisymmetric problems,
together with other problems such as torsion, plate bending and inelastic fracture, are
discussed in this book. During the past few years, Mukherjee and Chandra[2-4] have
proposed a BEM formulation for elastic-viscoplastic materials subjected to large inelastic
strains and rotations, and have applied this formulation to the study of sheet metal for-
mingf5] and metal extrusion[6]. The numerical applications of the BEM, presented in Refs
[2-6}, have been limited to two-dimensional (plane strain or plane stress) problems.

Metal forming applications under axisymmetric conditions—such as the bulging of
circular plates, drawing of tubes or extrusion of bars of circular cross-section, are far
more common than those under planar conditions. As described carefully by Sarihan and
Mukherjee[1, 7] among others, the modelling of axisymmetric problems by the BEM is far
more challenging than its planar counterpart. The primary reason for this is that the kernels
in the integral equations of the axisymmetric BEM formulation contain elliptic functions.
These kernels are singular and sensitive and, in general, cannot be integrated in closed form
even over boundary elements or internal cells of simple shape. Thus, special methods must
be developed for the accurate numerical integration of these kernels over discrete elements,
Typically, this requires the use of suitable analytical techniques before numerical quadrature
can be employed.

The axisymmetric elastic BEM problem first received attention from Kermanidis[8]
and Cruse er al.[9], followed by others such as Shippy et al.[10). The small strain~small
rotation axisymmetric elastic-plastic problem has been attempted, among others, by Cathie
and Banerjee[11], Telles[12] and Sarihan and Mukherjee[7]. The work of Sarihan and
Mukherjee[7] carefully describes the difficulties of boundary and domain integration of the
axisymmetric kernels and suggests methods for overcoming these problems. Comparisons
of BEM, finite element method (FEM) as well as direct solutions (whenever possible) are
available in Ref. [7] for several illustrative problems.

1679



1680 H. RasivaH and S. MUKHERJEE

Turning now to problems including both material and geometrical nonlinearities, the
work of Mukherjee and Chandra[2-6] still appears to be the only study of its kind that uses
the BEM as the method of choice for this class of problems. These papers present the
general three-dimensional integral equations for these problems based on a rate formulation
and an updated Lagrangian description. A detailed discussion of the derivation of these
equations appears in a review article by Mukherjee and Chandra[4]. Numerical implemen-
tation of these equations, however, have been so far limited to planar problems.

This paper presents an analysis of axisymmetric problems in the presence of material
as well as geometrical nonlinearities. The governing integral equations for this problem are
first derived from the corresponding three-dimensional ones. The case of the solid body,
where source points must be allowed to lie on the axis of rotation, is addressed as well.
Next, similar equations are derived for the boundary traction rates and internal strain rates.
The latter quantities are determined pointwise by analytical differentiation of the velocity
equation at an internal point. Such an approach preserves one of the key advantages to the
BEM in that jumps in stresses, caused by the numerical modelling in a2 method such as the
FEM, are completely eliminated throughout the interior of the body.

Derivation of the integral equations governing internal strain rates is tricky in that
kernels that are already 1/r singular (r being the distance between a source and a field point)
must be differentiated at an internal source point. This is carried out in this paper following
the method outlined by Bui[13] and the free terms arising out of all the integrals are given
here. This still leaves the problem of numerical evaluation of the principal values of integrals
which are 1/r? singular. A new method for accurate numerical evaluation of these integrals,
involving the use of the symbolic computer package MACSYMA([14], is presented here. It
is expected that this approach will prove to be very powerful whenever integrals with such
strong singularities must be evaluated numerically.

Numerical results for certain selected illustrative problems are presented at the end of
this paper. The inelastic constitutive model due to Anand{15] is used here to describe
material behavior. The computer program is flexible with regard to choice of a viscoplastic
material model and the one used here is for illustrative purposes only. The results from the
BEM analysis are compared with direct solutions.

GOVERNING EQUATIONS

Integral equations for 3-D problems

Following earlier publications by Mukherjee and Chandra[2-6], the velocity v at an
internal source point p, in a solid subjected to (three-dimensional) small elastic strains but
large inelastic strains and rotations, can be written as (i,/,k,/,m = 1,2,3)

v(p) = Lw [Uy(p, Q)1(Q) — Tyy(p, @)v(Q2)] dSg

+ J;" {2GUij,k(ps q)dﬁi‘)(q)} d Vé’ + J:s“ [Uz‘j,m(}), q) Gmar(@)vii(g) d V? (H

where U;; and T; are the usual kernels for infinitesimal isotropic elasticity that are available
in many references (e.g. Ref. [1]) and p and g are source and field points, respectively (with
capital letters denoting points on the reference boundary 0B % and lower case letters denoting
points inside the body with reference configuration B %), and a comma denotes differentiation
with respect to a field point. Further, the Lagrangian traction rates are denoted as 7, the
tensor G,;;, in terms of the components of the Cauchy stress ¢;; and the Kronecker deita
3, 18

2G; = 00+ 06304+ 6 305 — 00 jx 2)

and d is the non-elastic part of the symmetric velocity gradient, i.c.
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Material coordinates in the reference configuration are called X, and in the current
configuration x,. As mentioned before, an updated Lagrangian formulation is used here so
that, within each time step, the deformation gradient F ~ Iand x = X.

It is useful to mention here that the spin w is taken as

1 av; oy i
o325 @

and a hypoelastic model is assumed in which the Jaumann rate of the Cauchy stress, &, is
related to the elastic part of the symmetric velocity gradient as

where 4 and G are the usual Lamé parameters. The non-elastic rates 4 must be obtained
from an appropriate material constitutive model.

Other important assumptions that have been used to derive eqn (1) are that the non-
elastic portion of the symmetric velocity gradient is volume preserving, i.e.

df =0 6)

and also that the total deformation, which becomes mostly nonelastic as the deformation
proceeds, is also nearly incompressible so that the Jaumann rate of the Kirchhoff stress ¢
is assumed to equal that of the Cauchy stress ¢. Finally, physical body forces are also
assumed to be absent in this analysis. Each of these assumptions can be casily relaxed and
the full equations are given in Ref. [4].

Physically, eqn (1) relates the velocity at an internal point in the deforming solid to
the velocity and traction rates on the boundary as well as to velocity gradients inside the
body. The first surface integral on the right-hand side of eqn (1) is the usual one for linear
elasticity (except for the interpretation of ¢ which follows), and the first domain integral is
analogous to the one in small strain-small rotation inelastic BEM analysis|1, 16]. The last
domain integral arises due to finite strains and rotations inside the body and is sometimes
called the “geometric correction” in the finite element literature.

The boundary of the body, of course, undergoes large strains and normals to the
boundary experience large rotations during deformation. Thus, the so-called “load cor-
rection” effect, is reflected in the equation

fg = n,.s‘,, = t,—n,G/,uvk,, (7)

which relates the Lagrange traction rate %, (s, are the components of the non-symmetric
nominal or Lagrange stress) to the ““usual” traction rate ¢;

i[ = njl;'ﬂ. (8)

The rate /; can be interpreted as a component of the rate of the prescribed follower
force, per unit deformed surface area, on the deforming boundary. It is important to note
that eqn (7) introduces the unknown velocity gradients also on the boundary of the body.

The corresponding boundary integral equation can be obtained from eqn (1) in the
usual way by taking the limit as p — P. This replaces v,(p), on the left-hand side of eqn (1),
by C,;(P)v;(P) (where C is the well-known corner tensor) and p by P in every term on its
right-hand side[2-6].
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Velocity gradients at an internal point are best obtained by analytical differentiation
of eqn (1) at a source point p. A differentiated version of eqn (1) is obtained as

0,1(p) = L (0,17, Q)14Q) ~ T,.1(p, Q0/Q)] S}

9 \ d
+ Lo 26U,x(p, )R (@) AV + 7 Lo Usj.m(P: Q) Gritn (@) (g) 4V 9)

where [ denotes differentiation at a source point.

Differentiation of the domain integrals must be carried out with great care since the
kernels U, are already 1/r? singular for 3-D problems. Details of carrying out this pro-
cedure are given later in this paper in the context of axisymmetric problems.

Once the velocity gradients are determined inside the body by iterative solution of the
appropriate equations, it is a simple matter to determine d;;, then d?j’ from eqn (3), the
Jaumann rates of the Cauchy stress from eqn (5) and finally the material rates of the Cauchy
stress.

The stress rates on the boundary of the body are best determined by using a different
algorithm rather than by taking the limit of eqn (9) as p — P[1]. This matter will be taken
up again later in the context of axisymmetric problems.

Integral equations for axisymmetric problems

An axisymmetric body with axisymmetric loading is considered in this paper. Using
cylindrical polar coordinates R, § and Z, the non-zero components of displacements, stresses
and strains are ug, Uz, £xgs €as» £zz» Erz(=£zR) OrR> 048, Ozz and 0z (=02z). All dependent
variables are functions of R, Z, and ¢. Some torsion problems can be independent of 6 but
these are not considered in this formulation.

The notation used here is the same as in Refs [1,7] and is shown in Fig. 1. The
source point is denoted by (R, 0, Z) and the field point by (p, 8, {). Since the problem is
axisymmetric, it is sufficient to choose the source point in the x,—x, plane.

The axisymmetric BEM equations are derived from eqn (1) by integrating the kernels
U,, T, etc. for the field point moving around a ring keeping the source point fixed.

Source coords (R,0,2)
Field coords {p,8,§)

r2:p2 ¢RZ+€2+22- 2Rpcos-22€

Fig. 1. Geometry of the axisymmetric problem.
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Integrating @ from 0 to 2z in eqn (1) results in (j = 1 and 3, no sum over p or {)
v; = _[330 {Upj‘fp -+ ch‘fc - ij!«'ip o ngi(}po dCo

+ ZGJ‘ [U,,'pdf,‘},’ +Updfy + Ut pdy
Bo

n)

U,d
+ U d + p;oso]Po dp, ch*‘L [U‘,j‘p[a,,,,d,,&o,c(dp(+w,,¢)]

+ U,;,i[0,,d50 + 60y + 010, ]+ Uy ol — 65,000 + 0 5y + 010 d ]

U, 044,
+ Uy ol 0 (dyp — 00,0) + Oy} + —222

]Po dp, df, (10)

where, because of axisymmetry, tig = iy, 4z = U; and deg = J(dp2+d§ %) is an element on
the boundary of the p-{ plane. The domain B® and boundary 6B° in the above equation
now refer to a generator plane of the axisymmetric solid and its boundary (excluding the
portion on the x,-axis), respectively (Fig. 1), so that the three-dimensional problem is
effectively reduced to a two-dimensional one. Also, eqn (9) is valid for the velocity at an
internal source point. The corresponding boundary integral equation is obtained, as usual,
by taking the limit p — P which introduces the corner tensor C/1, 7).

The kernels for the case p ¢ the axis of symmetry are given in Refs [1, 7] (the kernels
U;; and U,; had been inadvertently transposed in these references). If pe the axis of
symmetry, as must be considered for solid bodies without axial holes in them, one gets

(-2
U, =0, U’3=§_§C;3)f}%
1 3-4 -2y
Uy =0, Uw:g(l_%[{ ), G )] an

where v is the Poisson’s ratio of the material. It is interesting to note that the non-zero
kernels above are 1/r (rather than In r) singular.

The traction kernels T,; and T, are linear combinations of U,; and derivatives of U,;
and U,; with respect to p and {[1, 7]. The explicit forms of the differentiated kernels U,; ,,
etc. for the case p¢ axis of symmetry, are given in Ref. [17]. For the case pe axis of
symmetry, one gets the relatively simple forms

_ _ 1 3p(({—-2Z) or on, ({—~Z)
Ti=0, Ton= _4(1—v)r2[ 7 an T {7——?——%}]
orfo -2Z)?
T, =0, Tyy= —Z(I“Li%;:i[(l"ﬁ')'* 1&;2“‘)—] (12)
where
0 -Z
5_;___(( " )nc_'_pn,.

It is interesting to note that even though, for example, U,, = 0 in eqn (11), kernels like
U,:, for pe axis of symmetry are nonzero. These are determined by considering the
appropriate components of the 3-D U, , kernel, setting R = 0 and then integrating 8 from
0to 2n.

BAS 23:12-G



1684 H. Ranvax and S. MUKHERJEE

The Lagrangian traction rates from eqn (7) become

t,=1t,—n, {Uppdpp +0,; (dp€ +wy)l—n; [aﬂodp( +0,d + oy wp{)

= iC =n, (- Opp@p; + aﬂCdpﬂ + aCCde] —-n [“pc (dy — wﬂt) + Uccd«)]- (13)

Velocity gradients at an internal point are obtained, as usual, by differentiating eqn
(10) at internal source point p. Referring to eqn (10), the term on the left-hand side becomes
v, rand the boundary integral on the right-hand side becomes

Lo (Upjrte+ Uy ric— T, — Ty nikc}po deo.

The derivatives can be immediately moved under the integral sign in the above expression
since p is an internal point, Q is a boundary point and the above integral is regular. Such,
however, is not the case for the domain integrals in eqn (10), which are, in general, 1/r
singular.

The derivatives 81/dx;, where Iis either of the domain integrals on the right-hand side
of eqn (10), can be evaluated using the method outlined by Bui{13]. Free terms result from
this process. The appropriate free terms from the various derivatives of the displacement
kernels, for the cases p¢ on the axis of symmetry and p € on the axis of symmetry, are listed
in Tables 1 and 2, respectively. It is very interesting to note from Table 2 that free terms
result from some first derivatives of U,, and U,; if p € on the axis of symmetry,

The actual free terms in an equation for v; rare obtained by multiplying the appropriate
terms in Table 1 or 2 with the corresponding terms from eqn (10). Thus, for example, the
explicit form of the equation for v, 1 is (no sum over p or {, p¢ x ;-axis)

U1 = L 0[pr,ifﬁ*Um.ifz—Tmﬂp—Tcx.If‘c]Ps deg
B

+2GJ [U,,l,,rdﬁ,’}MU,,,,ndf,'?+U<1,p1d§2’
B - BY(p)

1
8(1-v)

5—8vy
8(1—-v)

as
+Unnd+ U1 ';SZ*]PO dpo d{o+ df,’?(p)— ag’(p)

+ f [U 21,01[00ppp + 6o (dyg + W p0)]
8~ BY(p)

+ Up1,0106,5pdpe + 01 de + 655+ Upy g1 — 6,500 + 0 prdy, +070dy]

pr,TUoodoa]
Po

+ Upaloy(dog — @pp) +ody} + po dro dg

5—8y
+ 1661 =)
1
T 16G(1—v)

[app (p) dpp (P) + ap{ (P) (dp{ (P) + wp{ (P))}

[0 (P) @y (P)— @y (P)) + 01 (P) i (P)] (14)

where B{(p) is a circle of small radius #, centered at p, in the plane of the generator of the
axisymmetric solid. The Cauchy principal values of these integrals, with n — 0, must be
accurately evaluated numerically in a successful numerical implementation of this problem.
This is, in general, a formidable task since the integrands are 1/r? singular. A new, accurate
analytical/numerical technique for carrying out this task is described in the section catled
“numerical implementation” later in the paper. The explicit forms of the kernels U,; ; are
given in Rajiyah’s Ph.D. thesis[18]. As mentioned before, it is a simple matter to obtain the
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Table 1. Free terms in the velocity gradient equations for the case p¢

the axis of symmetry
Free term from radial Free terms from axial

Kernel differentiation (/= 1) differentiation (= 3)

U, s 0

Ui 0 TEZT?:_)E

Uer, 0 _TTU}:W@

Une - 1_6@1:755 0

Uy, 0 - Tsﬁl—ﬁ

Upas - e 0

Upss T 0

Use 0 ﬁjl;—s_:)—é

Jaumann and then the material rates of the Cauchy stress at an internal point once the
velocity gradients have been determined at that point. For this purpose, it is useful to record
the relationship between the material and Jaumann rates of components of the Cauchy
stress in cylindrical polar coordinates. These equations take the form

- .

Orr = Grr— 20 pzWr2

. .

Oo9 = Opg

* -

Orz = 0Opz+ OpprWpz —0zzWpr2

» .

G2z = Gzz+20p7Wp2. (15)

The boundary stress rates, at any time, are best obtained from a boundary algorithm
rather than by trying to take the limit of an equation like eqn (14) as p — P. This approach,
which requires tangential differentiation of the displacement (or velocity in a rate for-
mulation) components at a boundary point, was first suggested for linear elastic problems
by Rizzo and Shippy[19). This idea has been generalized to non-elastic problems with small
strains and rotations by Sarihan and Mukherjee[1, 7).

Table 2. Non-zero free terms in the velocity gradient equations for the case pe the

axis of symmetry
Free terms from radial Free terms from axial
Kernel differentiation (= 1) Kernel differentiation (7 = 3)
(17 ~20v) 1
Ui 800 -G Uss,r WA—")GC
-1 7-10v
Uie 3(I-vG Unse 30(1-v)G
-1 -1
U 12(1-v)G Uss 12(1-v)G
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The method used here for large strain—large rotation problems is very similar to that
outlined in Refs [1,7]. Once the iterative calculations are completed at the end of a time
step, the boundary values of v,, 7; and v, ; are determined at each boundary node. It is then
a simple matter to determine f; through the use of eqns (13).

At this stage, it is convenient to transform ¢ and £, into local coordinates normal and
tangential to the boundary at a boundary point P. Now, from eqn (8)

&nﬂ = l;l, 6RC = z‘C (16)

where &, and 6,, are the normal and shearing components of the Jaumann rates for the
Cauchy stress at P. The rest of the algorithm follows that outlined in Refs [1,7] with
constitutive equations (from eqn (5)) written as

av 1

__c.: - £k » (n)

e dcc E [acc V(O',,,, + 009)] + dcc

-U—R"'d _’1 »* * * dg,) 17
R = G0 ‘E[ada“_v(ann+occ)]+ 6 - (17)

These equations are solved for the unknown stress rates 6,. and ¢4, and then these,
together with &,, and &, are transformed back to global coordinates. Finally, the material
rates 0z, €tc, in global coordinates, are obtained from eqns (15). It is noted here that eqn
(18) in Ref. [7] should read d;; = 6,,+ 6. — 6zx.

NUMERICAL IMPLEMENTATION

Discretization

The first step, as usual, is to divide the boundary 8B of an R-Z section of the cylinder
into N, boundary segments and the interior into n; internal cells. Denoting by v(P,) the
components of the velocity at a point P which coincides with node M, a discretized version
of the boundary equation, eqn (10), can be written as (p, { not summed, j = 1 and 3)

Cijvi(Pu) = ZL (U8, + Uyt — Toyuty — Ty} po dey
N, €y

#2635 [ [+ 0,401 00+ U

Up/ d&?

0

+ ]Po dpo dC0+ZLA [Upj.p[appdpp+apc(dpc + @)

+ U, 140550 +0pdy +0gqwu]+ Upj [ — 0,0, + 04 dpp +0ydy]

U,,;005dss
0

+ U iloot(do — wp) +oydy]+ ]Pn dp, d{,. (18)

A similar discretized equation can be written for the velocity gradients v, {p) at an
internal point p. For future reference, this equation will be called eqn (18°).

Suitable shape functions must now be chosen for the variation of velocity and traction
rates along boundary elements and for the variation of d{ and v,; over internal cells. The
last approximation is necessary since the velocity gradients are present in the domain
integrals in both egns (18) and (18), and the solution must be obtained by an iterative
procedure at each time step[2-6]. It should be mentioned here that the velocity gradients
are also present in the boundary integrals in eqns (18) and (18'), through eqns (13). Separate
boundary shape functions need not be chosen for v, ; on the boundary. Instead, the domain
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shape functions for these quantities can be used to approximate v,; at boundary nodes
during the iterative process.

The idea here is to discretize eqns (18) and (18°) to obtain algebraic systems with the
traction rates, velocities and velocity gradients as unknowns. The solution for these quan-
tities is obtained at a given time by an iterative procedurc. Next, the elastic velocity
gradients, the Jaumann rates of the Cauchy stress components, and finally their material
rates are determined at this time. The complete solution is finally obtained by a time-
marching procedure together with suitable updating of the geometry and the kernels.
This procedure has been described several times before in the context of two-dimensional
problems{2-6] and will not be repeated here.

Integration of kernels

Of crucial importance in the BEM is the accurate numerical evaluation of the integrals
of products of singular kernels and shape functions of the unknowns, over boundary
elements as well as internal cells. It is pointed out again that the kernels U, are In r singular
while T;; are 1/r singular over the boundary. Also, first as well as second spatial derivatives
of U, the latter being 1/r? singular, must be integrated over internal cells. All these kernels
contain elliptic functions so that analytical/numerical methods must be developed for this
purpose. Also, these elliptic integrals are highly sensitive and great care must be exercised
in integrating them.

Special methods have been described in Refs [1, 7] for the integration of the kernels
U,; and T;; over boundary elements and for the integration of Uj;, over internal cells. In
short, a simple transformation r = e? is very useful for the first integration while a special
mapping technique has been successfully used for the domain integration of kernels like
U,;,- The T, integrals have been obtained indirectly through the use of a rigid body
translation mode in the Z-direction and inflation mode in the R-direction. Domain inte-
gration of second derivatives of U,; was avoided in Ref. [7] by using the so-called “‘strain
rate gradient method”.

The “strain rate gradient method” is impractical for these large deformation problems
since such a method would introduce spatial derivatives of terms like ¢,,d,, in the domain
integrals in an equation like eqn (14). Brebbia er al.[20] have suggested an elegant method
for the integration of Uj; ,; over internal cells. This method, however, relies on the separation
of the radial and the angular dependence of the U, kernels. This is possible for two-
dimensional but not for axisymmetric problems where complicated elliptic functions of R,
Z, p and { are present in the kernels. A new and accurate method for calculating these
integrals, for large deformation axisymmetric problems, is outlined below.

Singular integration of U,;,, over internal cells

It is easiest to explain this procedure in terms of local polar coordinates (r, ) centered
at the source point (R, Z) and lying in the R~Z plane. Here r is the distance between the
source and the field point and ¥ is the angle made by the line pq to the R-axis in the R-Z
plane (Fig. 2).

The kernels U,, ,1, etc. in eqn (14) contain terms with the strongest singularity 1/r?

Fig. 2. Notation used for the evaluation of domain integrals.
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and the next strongest 1/r. A typical term containing U, .1 in eqn (14) can be written as

L U (p.9)9() d4, = J 0 [pr.ﬂ G000~ Lo0r) | atroe) | TP as,

8°
(19)

where f()/r? is the term with the strongest singularity in U,, ,1 and g(g) is a term mul-
tiplying this kernel. The functions f(¥), for the various kernels Uj; ,;, have been obtained
by using the symbolic computer package MACSYMA[14] and are listed in Table 3. It
should be noted here that U;; ,, when p € axis of symmetry, can be directly put into the form
fQIr.

The first domain integral in eqn (19) is now only 1/ singular and can be obtained by
mapping followed by Gaussian integration as described in Refs [1, 7}. The second integral
on a triangular cell, using the notation given in Fig. 2, becomes

8, Dicos B B
o) L ay J IO 4 - g(,,)L £®) In (Dfcos B) d. 20)

r

The value of the integral at the lower limit ¢ — 0 vanishes when all contiguous elements
around p are taken into account since, due to the nature of the kernels

In
j SW)dy =0 if p¢ axis of symmetry
0

and

I fW) dy =0 if pe axis of symmetry.
0

Table 3. Singular functions from U, (c, =
1/87(1-v)G, ¢, = (3—4v))

Kemnel S W)e

Vo {cos 2y —cos 4y —c, cos 2¢)
Upx — (sin 4y +c, 5in 29)
Urion (sin 2§ —sin 4¢)

Una cos 4

Ui -~ (sin 4¢ + ¢, sin 2¢)
Unx (cos 2y +cos 4 + ¢, cos 2)
Ui cos 4y

Unee {cos 2y +cos A + ¢, cos 2¢)
Uyt (sin 2 —sin 4y)

Upann cos 4y

Uit {cos 4y —cos 2§ —c; cos 2¢)
Unn (sin 4§ —c, sin 20)
Usz,p2 cos 4

U (sin 2 +sin 4¢)
Uiz (sin 4¢ —c, sin 2¢)

Uiy —~ (cos 24 +cos 4§ — ¢, cos 2¢)
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It should be noted here that the above integral between 0 and =, for the case pe axis of
symmetry, vanishes for the combination U,; ,1+ U,;1/p (rather than for each term separ-
ately). Here d,, = dyy and 5, = 0.

Thus, the integral in eqn (20) is now completely regular and can be evaluated by usual
Gaussian quadrature. Of course, the complete integral over the domain B® is obtained by
summing over triangular cells as usual. Also, the above procedure is only used for accurate
evaluation of the singular integrals. If the domain cell is far from a source point, regular
Gaussian integration is sufficient. *‘Nearly singular” cases, where the source point is outside
but very near the domain of integration, require special care, usually perhaps the use of
more Gauss points in these regions. Such special treatment for “nearly singular” cases has
not been necessary in this work.

It should be mentioned here that the above procedure was inspired by the method
outlined in Brebbia ez al.[20] for the evaluation of similar singular integrals in two dimen-
sions. The method described above, however, is completely general and can be applied to
very complicated singular kernels and allows the prescription of arbitrary shape functions
for the functions g(g). It can be generalized even further by adding and subtracting the 1/r
singular portions also from U,, ,19(¢). That would then lead to regular integrals which
could, in principle, be evaluated directly by Gaussian quadrature without the need for any
shape functions for g(g). Shape functions for g(¢g) have been used in this work since the
unknown velocity gradients occur in the “geometric correction” integrals in equations such
as eqns (10) and (14).

Checking numerical calculations by inelastic modes

Schemes for numerical evaluation of singular integrals, such as the ones described
above, can be checked in elegant fashion through the use of “inelastic modes”. To this end,
an axisymmetric version of eqn (9), for small strains, but allowing compressible inelastic
deformation (i.e. &ff # 0), can be written as (j = 1 and 3, no sum over p or {)

= .LB [Ups.rto+ Upyrte Tyt = Tojruic) p de
a {n) (n 1) n) Up} )
+2GE7C_; A Uyjotont+ Up}.tsp;) + Ug;,,,&&, +U; Meé; + —p—e&; pdp d

0 U..
“*"1;3;,'[, [U,,,.,, + Uyt ‘;:‘1] [efs +eff +effllp dp dL. 13)

In purely mathematical terms, one can postulate “inelastic modes” where an imposed
displacement field gives rise completely to inelastic strains with zero elastic strains. Such
solutions, which give no stresses or tractions, must be admissible solutions to eqn (21) and
serve as useful checks of the numerical procedure and for the derivation of free terms. For
example, one can use

uz=Z, ng%:I

with other strains as well as tractions equal to zero. Now, from eqn (21) (j = 1 and 3, no
sum over p or {)

i ru
U= --L T, p de+ Ex_,J; {(}.+ 2G)Uy;, +}.[U,,,,, + ——f]}p dpd{ (22)

with, of course, u, 3 = 1 and the rest of the displacement derivatives on the left of the above
equation being zero. The left-hand side of the above equation can now be compared against
the computed value of the right in order to check the accuracy of the numerical calculations.
Other non-elastic modes that have proved useful for this purpose are: (1) uy = R, (2)
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ug = RZ, (3) uz; = R, (4) ug = R?, etc. The beauty of this idea is that any single valued
postulated displacement field is admissible for this purpose.
Two further comments in this regard are useful.

(a) This inelastic mode idea can also be used to compute derivatives of integrals
involving U,;, rather than to merely check the calculations. It is possible to postulate
different modes to indirectly obtain all these derivatives except that the quantities

8 d
p L Uy dd and 5 L U, d4

cannot be separately calculated since all inelastic modes give £ = ¢f)). Such separation is
not necessary for small strain inelasticity problems where only their sum occurs in egn (21).
They must, however, be calculated separately for large deformation problems.

(b) It should be emphasized here that any use of modes—elastic or plastic—such as
those discussed above or in Chapter 6 of Ref. [1], are used only affer the integral equations
have been discretized into algebraic systems of equations in terms of matrices and vectors.

NUMERICAL RESULTS

Hllustrative constitutive model

It has been mentioned before that the BEM formulation presented in this paper is
quite general and any of a large number of elastic-viscoplastic constitutive models can be
used here to describe material behavior. The reader is referred to Mukherjee’s book[1] for
a discussion of such models.

The particular model chosen for the numerical results discussed in this paper is due to
Anand[15). This is a unified elastic~viscoplastic model with a single scalar internal variable
5. The model, adapted to the present multi-axial large deformation situation, is described
by the equations

d;(?) =% Tss’j (23)

where s;; are the components of the deviatoric part of the Cauchy stress and ¢ is the stress
invariant defined as

o = J((3/2)sys;)-
The invariant 4™ is given by
d® = 4 e~ %7 (g/s)m g <s 4
together with the evolution equation
§ = ho(1 —s/s.)d® 25)

with
(n) "
s, = % le*T-J . (26)

Here T is the temperature in Kelvin, Q is the activation energy and k is Boltzmann’s
constant. Also, 4, h,, §, m and n are material constants of which m and n are, in
general, temperature dependent. The particular parameters used here are representative
of Fe-0.05 carbon steel in a temperature range of 1173-1573K and strain rate range of
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1.4x10-*-2.3x 102 s~ !, These parameters have been used for all the isothermal (at
T = 1173 K) simulations reported here. They are[15]

A=10"s"1  hy=1329.22 MPa,
" §=147.6 MPa, m=0.147, n=0.03
Ofk = 3.248 x 10°K

together with the elastic constants (at 1173 K)
E=588x10° MPa, v=03.
Also, the initial value of s is taken to be 47.11 MPa.

Shape functions

Boundary 8B is discretized either into straight boundary elements or into curved
quadratic elements in this study. The traction rates and velocities are assumed to be
piecewise quadratic on the boundary elements. Region B is discretized into triangular cells.
Terms multiplying the kernels in the domain integrals in egn (10), e.g. d% or
0 pppp+ 05 (dy; + w,), are assumed to be piecewise linear on the internal cells with the nodes
lying on the vertices of the triangles. Tangential derivatives of velocities are obtained
carefully on the boundary by differentiating the boundary shape functions and taking
account of the curvature (when present) of the boundary elements. Gaussian quadrature
for integration of non-singular kernels typically uses 10 Gauss points on a boundary element
and 7 Gauss points on an internal cell.

Problems considered

Three problems are considered as numerical examples in this work. These problems,
which have simple geometries, are chosen here because it is possible to generate direct
solutions in these cases. As is well known, it is very difficult to generate exact solutions for
large deformation problems of the type that are considered in this paper. These direct
solutions are compared against the BEM solutions in order to test the accuracy of the
numerical results. It is important to emphasize here that the BEM computer program that
has been generated here is completely general and can be used to solve large strain-large
rotation problems for bodies of arbitrary shape, subjected to arbitrary boundary conditions,
as long as the geometry and loading are axisymmetric. This general BEM program has
been employed to generate the numerical results that are reported in this paper.

The three problems that are considered here are given below.

(1) Uniaxial extension of a rod. Here the normals on straight boundaries do not rotate
during deformation. The boundary conditions in this problem are prescribed velocities and
traction-free surfaces.

(2) Expansion of a sphere under a time varying pressure loading at the inner surface.

(3) Expansion of a sphere under a constant prescribed velocity at the inner surface.

Problems (2) and (3) have spherical symmetry and it is sufficient to consider a small
(here five-degree) section for the BEM model. Also, since linear variation of the domain
terms are prescribed here, the load correction terms (equation (13)) must be incorporated
even for the cases where the velocities are prescribed at the boundary.

Numerical results for sample problems

The first problem considered here is that of a uniform rod held at one end and pulled
with a uniform velocity at the other end. Half of the rod is modelled in this case. It is
possible to obtain a direct solution for this problem by stepwise time integration with
updating of the geometry.

The meshes for this problem are given in Fig. 3 and the stress—elongation plots of an
internal point from a direct and BEM solution are given in Fig. 4. The BEM solution from
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4 internal cells 4 internal cells

Fig. 3. BEM discretizations for the uniaxial extension problem

the quadratic mesh is seen to agree very well with the direct solution up to a large (40%)
amount of strain. In both cases, the BEM predicts stiffer behavior compared to the direct
solution.

The next problems considered are those of uniform expansion of a thick spherical shell
subjected either to increasing internal pressure or to prescribed radial velocity at the inner
surface. Again, the idea is to compare the BEM results with those of a direct solution.

Generating direct solutions for large expansion of a sphere made of a compressible
material is not an easy task. However, the corresponding problem for a sphere made of an
incompressible material (v = 0.5) can be solved fairly easily and this solution is briefly
outlined in the Appendix. The BEM formulation presented in this paper does not admit the
incompressible case (v = 0.5) since the Lamé parameter 4, which occurs in the hypoelastic
equation, eqn (5), as well as in Hooke’s law for the reference field, blows up in this limit,
It is possible to generate an alternative BEM formulation for the incompressible case by
suitable modification of the appropriate equations, as is done for compressible linear
elasticity. Such has not been done in this work. Instead, in order to validate the present
code, a value close to v = 0.5 has been chosen and the BEM results are compared with
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Fig. 4. Stress as a function of elongation for the uniaxial extension problem—comparison of various
solutions.
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Fig. 5. Inflation of a sphere: (a) prescribed pressure rate at the inner radius ; (b) prescribed velocity
at the inner radius (@ = 0.1 m, 5= 0.15m, p= 10 MPas ', v = I mms™").

direct solutions for the expansion of a sphere made of an incompressible material. The
value of v, closest to 0.5, which gives stable results from this BEM formulation, is 0.488.
This value has therefore been used. Since the direct solution has been verified to be insensitive
to the value of v in the neighborhood of 0.5, this comparison of the BEM and direct results
is considered valid and useful.

A five-degree section of a sphere is modelled as shown in Fig. § and the BEM mesh for
this problem is given in Fig. 6. Only quadratic boundary interpolation is considered here.
The numerical results for the prescribed rate of pressure problem are given in Figs 7-9 and
the results for the prescribed velocity problem are given in Figs 10-12.

Once again, the agreement between the direct and BEM solutions is quite good,
although there are some differences between them at larger strains—especially for the
problem with kinematic boundary conditions. It should be emphasized again that the BEM,
as formulated in this paper, obtains internal stress rates through exact differentiation
(eqns (14)) of the velocity equations. This procedure eliminates jumps in stresses across
interelement boundaries—as is typical in the finite element method (FEM)—and greatly
contributes to accurate determination of the stresses as well as the non-elastic strains which
are driven by the stresses.

Computer times

All problems considered here were run on an IBM 3090/400 and the CPU times are
given in Table 4.

Fig. 6. Boundary element mesh for inflation of a sphere : 27 boundary nodes, 13 quadratic boundary
clements, 88 internal cells.
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Table 4. BEM program statistics

Problem Boundary nodes Internal nodes CPU (s)

1. Uniaxial tension :

linear BEM 4 1 311

quadratic BEM 7 2 54.2
2. Inflation of a sphere :

prescribed pressure rate 27 42 4918.7

prescribed velocity rate 27 42 6214.3

CONCLUSIONS

This paper presents a first attempt at solving axisymmetric boundary value problems,
with both geometrical and material nonlinearities, by the boundary element method. The
computer program, based on the BEM, has been validated by comparing BEM numerical
results against direct solutions for some problems. The numerical results, for simulations
into large strain-large rotation regimes, are quite accurate. Further applications of the
formulation in the area of metal forming is the subject of continuing research.

One important point deserves special mention in the context of the BEM vs the
common method of choice for these problems, the FEM. This point is related to the question
of accuracy of stresses and consequently non-elastic strain rates. The stress rates at internal
points are obtained here by exact differentiation of the velocity field. This procedure
eliminates jumps in stresses across interelement boundaries as is common in the FEM. It
is felt that this feature of the BEM greatly contributes to the accurate numerical deter-
mination of the stresses as functions of time. This matter is of crucial importance since the
stresses drive the solution through time and non-elastic strain rates are typically extremely
sensitive functions of the stresses.

It should be mentioned again that the strongly singular and sensitive kernels in the
BEM need very careful attention if a BEM implementation for this formidable class of
problems is to succeed. Such matters have been given careful consideration in this work.
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APPENDIX

Large deformation of a hollow incompressible sphere—direct solution
A spherical coordinate system (r, 8, ¢) is employed here

y o= 1/2, da) = 0, du = d‘¢
and

dv, 20,
d"+2du="a§:+—r'=0

where v, is the radial velocity.
Solving eqn (Al), one gets

, = c(t)jr?

with ¢(z) a time dependent function to be determined later.
Therefore

2¢(n) d (1)

do=——3" dp=—3".

Constitutive equations

Gy = ~p+26G(d,~d5)

Gop == G4y = —P+26(dy—dfy).

The function p is generally a function of r and ¢.
Equilibrium
diy _ 26m—in) _

dr r °

where 5., and 5y are Lagrange stresses.
Now in the absence of rotation

$y = Gp=—dn0,

S =0g “-duﬁﬁ.

(AD)

(A2)

(A3)

(A4)

(A3)

Substituting eqns (A2), (A3) and (A5) into eqn (A4) and using the relation (do,./dr)— (2(ce—6,)/r) = 0 in

the updated Lagrangian frame, one gets

& .

= F,0,d,r,0)
where

Féo,dr )= «—%‘—)(a,,—c“)-l’ﬁ' @

dd®) 4G

(A6)
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Solution strategy
(1) Find é(r) and p at the inner and outer radii from boundary conditions.
(2) Find p throughout the domain.
(3) Find o,(r, ?) and oy(r, ?).
(4) Update o,(r, f) and o,(r, r) by integrating the corresponding rates.
(5) Find v, = é(1)/r?.
(6) Update the geometry.
(7) Repeat (1)~(6) till desired time.



